CVM UNIVERSITY

M.Sc. (INDUSTRIAL CHEMISTRY) Semester-I Examination-2021 Friday, 26th February - 2021 10:00 AM to 12:00 Noon

Industrial Organic Chemistry:[101310105]

Q.l

Total Marks: 60

					Total Mains	
Note	e: (1) (2)	Atte Figu	mpt all questions. ures to the right indicate marks.			
Q.l	(a)	Answ	ver the following multiple choice q	uestic	ons.	(08)
	(1) The catalyst used for the conversion of Cyclo hexane into benzene is:					
		a.	Displacement reactions	b.	Pd-C or selenium	
		c.	Addition reactions	d.	Rearrangements reactions	
	(2) Boron trifluoride is used as a reagent in organic synthesis, and typically behave a:					
		a.	Lewis Base	b.	Lewis acid	
		c.	Zwitterion	d.	Amphoteric salt	
	(3) There occurs the movement of an atom or a group from one atom to another with the molecule					L
		a.	Displacement reactions	b.	Elimination reactions	
		c.	Addition reactions	d.	Rearrangements reactions	
	(4)	NH ₃	is the example of:			
		a.	Neutral electrophiles	b.	Positive electrophiles	
		c.	Neutral Nucleophiles	d.	Positive Nucleophiles	
(5) Self-oxidation and reduction reaction is known as:					wn as:	
		a.	Addition reaction	b.	Disproportion reaction	
		c.	Elimination reaction	d.	Isomerization	
(6) Aldehyde or ketone having α-hydrogen atom undergo self-condensation as:					undergo self-condensation is known	1
		a.	Cannizzaro reaction	b.	Aldol condensation	
		c.	Dakin reaction	d.	Wurtz reaction	
	(7) Meerwein-Ponndorf-Verley (MPV) reduction in organic chemistry is the reduction of ketones and aldehydes to their corresponding alcohols utilizing the catalyst:					
		a.	DCC	b.	Alkaline Hydrazine	
		c.	H ₂ O ₂ , NaOH	d.	Aluminium iso-propoxide	
	(8) The replacement of an aldehyde or acetyl group present in phenolic aldehyde or ketone by hydroxyl group from hydrogen peroxide in presence of dil. NaOH is known as:					
		a.	Dakin reaction	b.	Wurtz Fittig reaction	
		c.	Leuckart Reaction	d.	MPV reduction	
						PTO